The Rust Programming Language Brief Note (Vol1-Basic)

## 1 Getting Started
1
2
3
4
5
6
7
8
9
10
11
$ cargo new proj

// build
$ cargo build //dev
$ cargo check
// build result
$ ./target/debug/proj
// build + run
$ cargo run

$ cargo build --release //prod

More

Neural Architectures for Named Entity Recognition 论文笔记

Paper: 1603.01360.pdf

code:

核心思想:pretrained + character-based 词表示分别学习形态和拼写,Bi-LSTM + CRF 和基于转移的模型均可以对输出标签的依赖关系建模。

看了 Related Work 后发现很多想法其实早就冒出来了,不同的论文在不同点上使用了不同的方法,本篇恰好用这样的方法取得了最好的效果。其实,我觉得更加有意思的是基于转移的模型,它构建了一个 action 的时间序列,感觉更加抽象,想法更加精妙。

More

剑指 Offer2(Python 版)解析(Ch2)

具体实现和测试代码

系列解析(TBD):

  • Python 单例模式
  • 好玩儿的 DP
  • 递归还是递归
  • 双指针的威力
  • 双列表的威力
  • 有趣的排列组合

特别说明:下文中的实例代码一般仅包括核心算法(不一定能直接运行),完整代码可以参考对应的链接。

More

剑指 Offer2(Python 版)解析(Ch5)

具体实现和测试代码

系列解析(TBD):

  • Python 单例模式
  • 好玩儿的 DP
  • 递归还是递归
  • 双指针的威力
  • 双列表的威力
  • 有趣的排列组合

特别说明:下文中的实例代码一般仅包括核心算法(不一定能直接运行),完整代码可以参考对应的链接。

More

剑指 Offer2(Python 版)解析(Ch3)

具体实现和测试代码

系列解析(TBD):

  • Python 单例模式
  • 好玩儿的 DP
  • 递归还是递归
  • 双指针的威力
  • 双列表的威力
  • 有趣的排列组合

特别说明:下文中的实例代码一般仅包括核心算法(不一定能直接运行),完整代码可以参考对应的链接。

More

剑指 Offer2(Python 版)解析(Ch4)

具体实现和测试代码

系列解析(TBD):

  • Python 单例模式
  • 好玩儿的 DP
  • 递归还是递归
  • 双指针的威力
  • 双列表的威力
  • 有趣的排列组合

特别说明:下文中的实例代码一般仅包括核心算法(不一定能直接运行),完整代码可以参考对应的链接。

More

剑指 Offer2(Python 版)解析(Ch6)

具体实现和测试代码

系列解析(TBD):

  • Python 单例模式
  • 好玩儿的 DP
  • 递归还是递归
  • 双指针的威力
  • 双列表的威力
  • 有趣的排列组合

特别说明:下文中的实例代码一般仅包括核心算法(不一定能直接运行),完整代码可以参考对应的链接。

More

Few-Shot Charge Prediction with Discriminative Legal Attributes 论文笔记

Paper: coling2018_attribute.pdf

code: thunlp/attribute_charge

核心思想:基于类别属性的注意力机制共同学习属性感知和无属性的文本表示。

这是 COLING2018 上的一篇老论文了,最近因为一些事情正好遇上,当时大概看了一下就发现这篇文章正好解决了我之前在做多分类任务时没有解决的问题。所以拿来记录一下,顺便研究下代码。

More

关系提取简述

之前整理过一篇关于信息提取的笔记,也是基于大名鼎鼎的 SLP 第 18 章的内容,最近在做一个 chatbot 的 NLMLayer 时涉及到了不少知识图谱有关的技术,由于 NLMLayer 默认的输入是 NLU 的 output,所以实体识别(包括实体和类别)已经自动完成了。接下来最重要的就是实体属性和关系提取了,所以这里就针对这块内容做一个整理。

属性一般的形式是(实体,属性,属性值),关系的一般形式是(实体,关系,实体)。简单来区分的话,关系涉及到两个实体,而属性只有一个实体。属性提取的文章比较少,关系提取方面倒是比较成熟,不过这两者之间其实可以借鉴的。具体的一些方法其实这里已经提到不少了,这里单独提出来再梳理一遍。

More